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1. Introduction

In order to establish a strategy to learn robotic

grasping behaviors with external vision (e.g. cameras

on a robot head) and tactile perception obtained by

FingerVision, we develop a grasp adaptation control

that grasps unknown objects with adequate grasp-

ing force. FingerVision proposed by Yamaguchi and

Atkeson [1, 2] is a vision-based tactile sensor that gives

robots a tactile sensation and visual information of

nearby objects. When grasping objects, humans are

combining vision and tactile perception. However, use

of tactile perception is not considered as essential in

robotics. For example, in the recent work of learn-

ing robotic grasping with deep learning [3], robots

learned grasping without tactile sensing. This was

possible because there is a consistent relation between

the state before grasping (visual scene of the object

and the gripper) including the grasping parameters

and the outcome of grasping. Tactile sensing is inter-

mediate information, which is not necessary to use in

learning grasping behavior.

However tactile perception is useful in many manip-

ulation scenarios. When grasping a container whose

contents are unknown, visual information is not suffi-

cient to decide the grasping force, while tactile sens-

ing can handle this problem. Romano et al. created

a tactile-based grasping behavior using a PR2 robot

that grasped a range of unknown objects including

deformable ones [4]. From our experience of peeling

banana with a Baxter robot teleoperated by a human,

we noticed that the absence of tactile feedback makes

teleoperation difficult [5]. Since peeling a banana is

a dual-arm manipulation task and bananas are de-

formable, estimating force applied by the other hand

is not easy, which makes it difficult to avoid slipping

or crushing.

We explore combining external vision and tactile

perception in learning grasping behaviors. This ap-

proach should make the acquired grasping behavior

more robust, and the required number of samples

might be decreased. We consider a grasping behavior

model consisting of two components: one is a predic-

tor of grasp parameters such as a grasp pose using

external vision, and the other is a controller to adapt

the grasp to hold an object using tactile sensing. We

refer to them as the grasp pose estimator and grasp

adaptation controller respectively.

This paper reports on an implementation of grasp

adaptation controller with FingerVision and the re-

Fig.1 Left: Robotiq gripper with FingerVision sen-
sors. Right: 30 objects used in the experiment.

Fig.2 Examples of grasp (cup cake, raw egg, hairy
rubber toy, strawberry, tomato).

sults of preliminary experiments. We consider the

grasping task as holding an object without crushing

it. Since holding an object is achieving a state where

the object is not slipping in a gripper, controlling the

grasp to avoid slippage would be the most straight-

forward approach. We use FingerVision [1] to detect

slip, and propose a grasp adaptation controller that

modifies the grasp to avoid slip.

2. Related Work

Similar ideas of using slip sensing in grasping are

explored in [4, 6, 7, 8]. There are many papers on slip

detection such as [9]. The major advantage of our

approach is that since FingerVision provides vision-

based slip detection, it does not depend on the force

between the fingers and an object. It can sense slip

even when the object is very lightweight, such as

grasping origami objects. This approach can control

grasping when the force is too small to measure. Such

a grasping strategy is adequate especially for grasping

deformable and fragile objects such as vegetables, raw

eggs, and origami objects.

3. Grasp Adaptation Controller

We use FingerVision to detect slip. The image se-

quence obtained by FingerVision is processed using

a background subtraction method. Since the back-

ground subtraction perceives both the object move-



ment and the background movement (including grip-

per movement), we need to distinguish the object

from the background. First we build a background

model, and then we adaptively construct an object

model. Finally we use the object model as a mask to

extract the object movement from the image. Both

the background and the object models are represented

as HSV color histograms. We use an implementa-

tion of OpenCV (cv::BackgroundSubtractorMOG2)

for the background subtraction.

The grasp adaptation controller is modeled with a

finite state machine. We assume a two-finger parallel

gripper. It has two phases: (1) Moving the object

upward slightly (5 mm) and waiting for a short time

(0.4 s). If slippage is detected, moving the object to

the initial height and closing the gripper slightly (0.7

mm). These are repeated until no slippage is detected.

(2) Moving the object upward to a target height (15

cm from the initial height). If slippage is detected, we

go back to the phase (1). In both phases, a feedback

control is activated: when slip is detected, closing the

gripper slightly (0.7 mm).

4. Preliminary Test of Grasp Adapta-

tion Controller

We conduct a preliminary test of the grasp adapta-

tion controller. We verify that when the grasp pose

estimator gives an adequate pose, the grasp adapta-

tion controller can grasp an object robustly. We let

a human operator decide a good grasping pose to a

given object with a joystick controller, and then run

the grasp adaptation controller to pick up the object.

We do not tune the parameters of the controller for

each object.

We tested with 30 deformable and fragile objects

shown in Fig. 1 including vegetables, fruits, origami

objects, and a raw egg. We use a Baxter robot with a

Robotiq 2-Finger Adaptive Robot Gripper where two

FingerVision sensors are installed as shown in Fig. 1.

Initially each object is placed on a table.

We conducted 36 trials: Origami box, Origami

crane, Badminton ball, Hairy rubber toy, Cup

cake, Chocolate, Strawberry, Tomato-medium-1, Egg-

plant@1, Eggplant@2, Zucchini-yellow, Mushroom-

1@1, Mushroom-1@2, Egg(raw), Pepper-red-1, Oys-

ter mushroom-1, Peach-1, Mushroom-2, Potato-

1, Kiwi-1, Tomato-medium-2, Broccoli@1, Broc-

coli@2, Oyster mushroom-2, Green pepper-1, Kiwi-

2, Pepper-red-2, Tomato-big, Banana-1@1, Banana-

1@2, Banana-1@3, Green pepper-2@1, Green pepper-

2@2, Peach-2, Potato-2, Banana-2. A label with @N

denotes an N-th trial of the same object. Examples

of successful grasping are shown in Fig. 2. There were

several failures: (1) Dropped after bringing up: Oys-

ter mushroom-1, Potato-1. (2) Slippage could not

be detected due to a computer vision failure: Egg-

plant@1 (the skin was black), Broccoli@1 and Green

pepper-2@1 (the color was similar to the fingers).

(3) Closing gripper did not stop in Banana-1@1 be-

cause detecting the deformation of object as slip.

Since the contact force from the table disappeared

when bringing up the banana, the banana skin was

deformed slightly. (4) In Banana-1@2, dropped dur-

ing bringing up, and failed to re-grasp since the fingers

got stuck at the edge of the object, and the passive

joints of the gripper bent. Note that (2) was solved by

grasping the green part (Eggplant@2), helping the ob-

ject detection manually (Broccoli@2), and just trying

again (Green pepper-2@2).

The issues of (2) and (3) will be solved by improv-

ing the computer vision method for: (A) a better ob-

ject detection and (B) distinguishing slippage and de-

formation. The issues of (1) and (4) will be solved

by improving the behavior. For example, testing the

grasp stability by shaking the object after grasping

will avoid (1). (4) can be solved by optimizing the

trajectory of fingertip in re-grasping.

5. Conclusion

We explored a grasp adaptation control that grasps

unknown objects with adequate grasping force with-

out crushing them. The controller is a feedback con-

trol of slip where FingerVision [1] is used to detect

slip. Since this slip detection is vision-based, it can

sense slippage of very lightweight objects such as

origami objects. The results of preliminary experi-

ments showed that although slight improvements are

necessary for the slip detection and the grasp adap-

tation, this approach is promising toward the goal of

learning grasping a range of objects.
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